BUILDING CODE TRAINING

Commercial Lighting – Controls
Presenter: Joey Starr
ABOUT SOUTHFACE

Building a Regenerative Economy, Responsible Resource Use & Social Equity Through a Healthy Built Environment for All
Online educational resources are available by visiting: www.southfaceonlinetraining.org

Technical assistance or training requests can be submitted to Georgia Energy Code Hotline at: energycodes@southface.org or 404-604-3598

Additional Resources
Georgia Energy Code: If you would like additional information on Georgia’s current energy code, please visit the Georgia Department of Community Affairs website at: www.dca.ga.gov/development/ConstructionCodes/programs/EnergyCodeTrainingWorkshops.asp

DOE Field Study: If you would like additional information on other DOE Field Studies and participating states, please visit the Building Energy Codes website here: https://www.energycodes.gov/compliance/energy-code-field-studies

Georgia Field Study: If you would like further information regarding the Georgia Energy Code Field Study, please visit our project webpage found at: www.seealliance.org

COMPLIANCE OPTIONS

Prescriptive path must comply with these:

• C402 Envelope
• C403 Mechanical
• C404 SWH
• C405 Lighting

Plus one optional path from C406

• C406.3 Reduced Lighting Power
• C406.4 Enhanced Lighting Controls
HIGH-EFFICACY LAMPS

• Neither ASHRAE nor the IECC require LEDs
• Future codes, your local jurisdiction, and your customers might have more stringent requirements
• Compact fluorescent lamps, LED lamps, T8 or smaller diameter linear fluorescent lamps, or other lamps with an efficacy based on lamp wattage

<table>
<thead>
<tr>
<th>Lamp Wattage</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 40 watts</td>
<td>60 lumens/watt</td>
</tr>
<tr>
<td>15-40 watts</td>
<td>50 lumens/watt</td>
</tr>
<tr>
<td>< 15 watts</td>
<td>40 lumens/watt</td>
</tr>
</tbody>
</table>
LIGHTING POWER DENSITY

ASHRAE 90.1 2013 > 2016 Changes

• LPDs were revised based on improved efficacy of LED lighting
• Space-by-space LPDs were reduced by an average of 26%
• Building area LPDs were reduced by 12% on average
• Exterior LPDs were reduced by 30%
406.3 REDUCED LIGHTING POWER (OPTIONAL)

- Whole building LPD determined using 90% of values in Table C405.4.2(1) x floor area for the building types OR
- Using 90% by the space-by-space method in Section C405.4.2
- Determine total LPD of building using reduced whole building interior lighting power in Table 406.3 x floor area for the building types
406.4 ENHANCED LIGHTING CONTROLS (OPTIONAL)

Enhanced digital lighting controls per C406.4, controls located and operated in accordance with C405.2.2:

• Luminaires capable of continuous dimming
• Luminaires capable of being addressed individually OR a controlled group of < 4 luminaires
• < 8 luminaires controlled together in a daylight zone
• Fixtures controlled through digital control system that includes the following function:
 • Control reconfiguration based on digital addressability
 • Load shedding
 • Individual user control of overhead general illumination in open offices
 • Occupancy sensors capable of being reconfigured through the digital control system
• Construction documents including submittal of Sequence of Operations including specs outlining each function of the fixture requirements above
• Functional testing of controls comply with C408
BUILDING AREA METHOD

• Determine gross lighted area for each building type area using:
 • Exterior faces of exterior walls
 • Centerline of interior walls

• Calculate the area power allowance by multiplying the gross lighted area by the applicable building type allowance from applicable table

• Sum all the allowances (if more than one building type area)
BUILDING AREA METHOD

Advantages
• Fewer calculations

<table>
<thead>
<tr>
<th>Building Area Type</th>
<th>LPD (w/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive facility</td>
<td>0.80</td>
</tr>
<tr>
<td>Convention center</td>
<td>1.01</td>
</tr>
<tr>
<td>Courthouse</td>
<td>1.01</td>
</tr>
<tr>
<td>Bar lounge/leisure</td>
<td>1.01</td>
</tr>
<tr>
<td>Cafeteria/fast food</td>
<td>0.90</td>
</tr>
<tr>
<td>Dining: family</td>
<td>0.95</td>
</tr>
<tr>
<td>Dormitory</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Disadvantages
• Limited building area type selection - use reasonably equivalent type
• Insensitive to specific space functions and room configurations
• Generally more restrictive than space-by-space method
SPACE-BY-SPACE METHOD

- Determine the gross lighted area of each space type
- Include balconies and mezzanines
- Use centerline of walls between spaces
- Calculate the space power allowance by multiplying the space type area by the applicable allowance
- Sum all the allowances
SPACE-BY-SPACE METHOD

Advantages
• More flexible than building area method
• More accurately accounts for actual room lighting power needs
• Provides additional allowances for:
 • Difficult room configurations
 • Decorative and retail needs
 • Use of advanced controls not already required in the standard

Disadvantages
• More calculations needed (individual spaces)

<table>
<thead>
<tr>
<th>Common Space Types</th>
<th>LPD (w/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locker room</td>
<td>0.75</td>
</tr>
<tr>
<td>Lounge/breakroom</td>
<td></td>
</tr>
<tr>
<td>In a healthcare facility</td>
<td>0.92</td>
</tr>
<tr>
<td>Otherwise</td>
<td>0.73</td>
</tr>
<tr>
<td>Retail</td>
<td></td>
</tr>
<tr>
<td>In Dressing Room</td>
<td>0.71</td>
</tr>
<tr>
<td>In a Mall Concourse</td>
<td>1.10</td>
</tr>
</tbody>
</table>
SPACE-BY-SPACE METHOD

• If a physical space has multiple functions such that more than one space type
 • Break the space into smaller subspaces
 • Use the centerline of interior walls and dividing line between subspaces to determine subspace areas
 • Calculate the allowance separately for each subspace
• Exception - Subspaces with areas less than 20% of the original space and less than 1000 ft² do not need to be broken out separately
<table>
<thead>
<tr>
<th>School Example</th>
<th>LPD (w/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audience Seating Area - Gym</td>
<td>0.65</td>
</tr>
<tr>
<td>Classroom</td>
<td>1.34</td>
</tr>
<tr>
<td>Computer Room</td>
<td>1.71</td>
</tr>
<tr>
<td>Lab - Classroom</td>
<td>1.43</td>
</tr>
<tr>
<td>Mechanical Room</td>
<td>0.42</td>
</tr>
<tr>
<td>Restroom</td>
<td>0.98</td>
</tr>
<tr>
<td>Storage Room => 50 ft²</td>
<td>1.10</td>
</tr>
<tr>
<td>Property</td>
<td>Common Space Type 1</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Location</td>
<td>Office</td>
</tr>
<tr>
<td>Use</td>
<td>Workstation</td>
</tr>
<tr>
<td>Area</td>
<td>100</td>
</tr>
<tr>
<td>Equipment</td>
<td>10</td>
</tr>
<tr>
<td>Furniture</td>
<td>5</td>
</tr>
<tr>
<td>Store</td>
<td>2</td>
</tr>
<tr>
<td>Utilities</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Table data is based on typical design parameters. Actual requirements may vary based on specific building codes and standards.
A. LOCAL CONTROL

Requires one or more manual control in the space that controls all the lighting in that space.

• Each control device will control a maximum of:
 • 2,500 ft2 in spaces < 10,000 ft2
 • 10,000 ft2 in spaces > 10,000 ft2
• Readily accessible to occupants
• Located where the controlled lights are visible
• Must identify the area served by the lights and indicate their use

Exceptions:
Remote location for safety & security (requires pilot indicator and lighting clearly labeled)
B. RESTRICTED TO MANUAL ON

Occupancy
- Turn lights ON automatically upon detecting the presence of people
- Occupancy sensors are better for areas with no daylight like bathrooms or where safety is a concern

Vacancy
- Must be turned on manually
- Vacancy sensors save more energy
- No “false positives”
EXEMPTIONS

Full auto-on controls allowed in

• Public corridors
• Stairways
• Restrooms
• Primary building entrance areas and lobbies
• Areas where manual-on operation would endanger safety or security of room or occupants
C. RESTRICTED TO PARTIAL AUTOMATIC ON

Maximum of 50% of the lighting power for general lighting is allowed to be automatically turned on and none of the remaining shall be auto ON
D. BILEVEL LIGHTING CONTROLS

• Light Reduction Controls must allow the occupant to reduce connected lighting load
 • To have at least one control step between 30% and 70% (inclusive) of full lighting power in addition to all off
 • In a reasonably uniform illumination pattern
• Light-reduction control are not required in daylight zones with daylight responsive controls complying with C405.2.3
D. BILEVEL LIGHTING CONTROLS (CONT.)

- Controlling all lamps or luminaires
- Dual switching of alternate rows of luminaires, alternate luminaires or lamps
- Switching middle lamp luminaires independently from the outer lamps
- Switching each luminaire or each lamp
E./F. AUTO DAYLIGHT CONTROLS

- Photocontrols required for general lighting in any space top-lit by > 150 W
- Photocontrols shall:
 - Have readily accessible calibration adjustments
 - Reduce electric lighting based on available daylight using continuous or 4-step staged dimming
 - Combine controls for overlapping top and sidelit areas and lighting shall be controlled by toplighting
- Exceptions for toplighting with tall adjacent shading, skylight VT < 0.4, spaces in CZ 8 < 200 W
G. AUTO PARTIAL OFF

- Automatically turn lights off within 20 minutes after occupants have left space
- Either manual-on or controlled to automatically turn on lighting to not more than 50% power
- Incorporate a manual control to allow occupants to turn off lights
I. SCHEDULED SHUTOFF

Must include an override switching device with the following:

• Minimum 7-day clock
• Capable of being set for 7 different day types/week
• Incorporate holiday “shutoff” feature to turn all controlled lighting loads for ≥ 24 hours and resume to normally scheduled operations
• Program backup capabilities to prevent loss of program and time setting for ≥ 10 hours if power is interrupted
EXTERIOR LIGHTING CONTROLS

• Automatic off control when daylight is available
• Curfew hours for façade and landscape lighting (midnight – 6am or close to open)
• Other exterior lighting (including advertising) must automatically reduce power by a minimum of 30% either:
 • Midnight – 6am (or 1 hour after business close until open)
 • Motion sensor control (any period of inactivity greater than 15 min)
EXTERIOR CONTROLS EXCEPTIONS

- Lighting for covered vehicle entrances or exits where required for safety, security or eye adaptation
- Lighting integral to signage
CONTROL OF SPECIAL APPLICATIONS

Special applications separately controlled from general lighting
• Display or accent lighting
• Case lighting
• Nonvisual lighting
• Demonstration lighting

Photo Courtesy of Sweet Grass Pastures
FUNCTIONAL TESTING

ASHRAE 90.1
• Functional testing (calibrated/adjusted/programmed) of lighting control devices and systems required within 90 days of occupancy
• Must be performed by individuals NOT involved in design, manufacture, or installation

IECC
Prior to passing final inspection, registered design professional to provide evidence that lighting control systems have been tested to ensure that control hardware and software are calibrated, adjusted, programmed and in proper working order per construction documents and manufacturer’s installation instructions
LIGHTING CONTROL DESIGN

- Keep sensors simple and verify that they are set up properly
- Foster good human behavior to save energy
- An *educated* occupant is the best sensor
LIGHTING CONTROL DESIGN

• Occupants must have ready access
• Recommission equipment if necessary, even (especially) on new buildings
THANK YOU!

Technical assistance or training requests can be submitted to Georgia Energy Code Hotline at: energycodes@southface.org or 404-604-3598